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The models we leant before all assume there is a linear relationship between x
and y .

e.g. wage and education; wage and experience; Keenland attendance and
temperature; food consumption and income, etc.

But really? Do you really believe their relationship can be represented by a straight
line?
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Why Do We Need Nonlinear Model?

Theory predicts nonlinear relationship
I Optimal solution.

For example, the “golden rate” saving rate; the optimal hours of study time every week;
the optimal tax rate; etc.

I Changing marginal effect.
For example, the return to education may increase with year of schooling; productivity
and working experience; utility you get from the apple and the number of apple you eat;
etc.
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Polynomial Regression Models
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A simple linear regression model,

y = β0 + β1x + ε

is easy to interpret: if x increases by one unit, we expect y to change by β1,
holding other variables constant.

However, sometimes the relationship cannot be represented by a straight line and,
rather, must be captured by an appropriate curve.

Since one of the assumptions in Chapter 15 replaces the restriction of linearity on
the parameters, not the x values, we can capture many interesting nonlinear
relationships within this framework.
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The Quadratic Regression Model

For example, a firm’s average cost curve tends to be “U-shaped”.

Due to economies of scale, average cost initially falls as output increases, before
rising once output reaches a certain threshold.

Such a relationship can be estimated by a quadratic regression model:

y = β0 + β1x + β2x2 + ε
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The “Flexible” Quadratic Model

For a quadratic regression, we estimate:

y = β0 + β1x + β2x2 + ε

The sign of β2 determines the shape:
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With quadratic regression model y = β0 + β1x + β2x2 + ε,

The marginal effect of x on y is β1 + 2β2x . The marginal effect is NOT a constant,
but a function of x .

Predictions with this model are made by ŷ = b0 + b1x + b2x2.

When x = − b1
2b2

, ŷ = {max ,min} values. ŷ reaches its maximum (b2 < 0) or
minimum (b2 > 0) when the marginal effect =0.
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Example

Suppose we want to estimate the relationship between average cost and output.
We gather data for 20 manufacturing firms on output and average cost.

When using a scatterplot to display the relationship, notice that a quadratic curve
seems to better fit the data.

The model is
average cost = β0 + β1output + β2output2 + ε
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Results

̂average cost = 10.5225− .3073output + 0.210output2

Is the average cost curve concave or convex? Explain how you know.

Find the output that maximizes/minimizes the average cost. (Hint: first order
condition).

−.3073 + 2× .0210output = 0

output = 7.32
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Prediction

What is the change in average cost going from an output level of 4 million units to
5 million units?

ÂC = 10.5225− 0.3073× 4 + 0.0210× 42 = 9.63

ÂC = 10.5225− 0.3073× 5 + 0.0210× 52 = 9.51

An increase in output from 4 to 5 million units(one unit increase in x ) results in a
$0.12 decrease in predicted average cost.

What is the change in average cost going from an output level of 8 million units to
9 million units? Compare this result to the result found in part 1.

ÂC = 10.5225− 0.3073× 8 + 0.0210× 82 = 9.41

ÂC = 10.5225− 0.3073× 9 + 0.0210× 92 = 9.46

An increase in output from 8 to 9 million units(one unit increase in x) results in a
$0.05 increase in predicted average cost.

Depending on the value at which x is evaluated, a one-unit change in x may have
positive or negative influence on y , and the magnitude of this effect is not
constant.
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Higher Order Models

The quadratic regression model allows one sign change of the slope capturing the
influence of x on y .

Polynomial regression models, more generally, are able to describe various
numbers of sign changes.

For example, the cubic regression model allows for two changes to the slope:

y = β0 + β1x + β2x2 + β3x3 + ε

The n-th order polynomial regression model is:

y = β0 + β1x1 + β2x2
1 + β3x3

1 + . . .+ βnxn
1 + ε

It allows n − 1 signs changes of the slope.
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Regression Models with Logarithms
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Another commonly used transformation to capture nonlinearities between the
response and the explanatory variables is based on the natural logarithm.

Linearity assumes that an increase of one unit in the explanatory variable has the
same impact on the response variable regardless of whether x is increasing from
100 to 101 or 1000 to 1001.

That may not be true if, for example, we want to predict how food expenditure
responds to changes in income.
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The Log-Log Model

In a log-log model both the response and the explanatory variables are
transformed into natural logs. We can write this model as:

ln(y) = β0 + β1 ln(X ) + ε

The relationship between y and x is captured by a curve whose shape depends
on β1.

Notice, β1 is the marginal effect. It denote the percentage change of y if x
increases by one percentage.
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The Slope as an Elasticity

In the model ln y = β0 + β1x + ε, we would interpret the slope as the percent
change in y given a 1% increase in x . In other words, β1 is a measure of elasticity.

Suppose y represents quantity demanded and x is price. If β1 = −1.2, it would
imply that a 1% increase in price is expected to lead to a 1.2% decrease in its
quantity demanded.
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Prediction

Even though we estimate the equation with transformed data, it is relatively easy
to predict in the original units.

After the logarithm are computed, the equation is estimated as:

l̂n y = b0 + b1 ln x

But ŷ = exp(b0 + b1 ln x) is known to systematically underestimate the expected
value of y , so we correct for that by making predictions using:

ŷ = exp(b0 + b1 ln x + se2/2)

where se is the standard error of the estimate.
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Example
Refer back to the expenditure example where y is expenditure on food and x
represents income. Let the sample regression be

l̂n y = 3.64 + 0.5 ln x

with the standard error of the estimate se = 0.18.
1 What is the predicted food expenditure for an individual whose income is $20,000?
2 What is the predicted value if income increases to $21,000?
3 Interpret the slope coefficient, b1 = 0.5.

Ding (UKY) Lecutre 10 April 16, 2019 18 / 27



1 For the log-log model, ŷ = exp(b0 + b1 ln x + se2/2). If income equals 20,000,
ŷ = exp(3.64 + 0.5 ln 20000 + 0.182

2 ) = 5475.

2 If income equals 21,000, ŷ = exp(3.64 + 0.5 ln 21000 + 0.182

2 ) = 5610.
3 The slope means as x increases by 1%, y increases by 0.5%. As shown in the

first two parts, income increases 5% from 20,000 to 21,000, and expenditure on
food increases by 2.47% from 5475 to 5610, roughly by 2.5%.
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Semi-Log Model

Another common application is a “semi-log” model where only one of the variable
is transformed.

In a logarithmic model only the x is expressed as a natural log:

y = β0 + β1 ln x + ε

y is the original units of measurement. x measurement unit now is the percentage.

β1 is still the marginal effect. β1/100 measures the unit change of y when x increases
by 1 percent.
Prediction model is: ŷ = b0 + b1 ln x .
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Example
Continuing with the earlier example of food expenditure. Let the estimated logarithmic
regression be:

F̂ood = 12 + 566 ln(Income)

For an income of $20,000, predicted food expenditure is:

F̂ood = 12 + 566 ln(20, 000) = 5617

The slope b1 = 566 implies that a 1 percent increase in income leads to an
increase in food expenditures of 566/100 = 5.66.
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The Exponential Model

When the y variable is transformed, but not the x , we have the exponential model:

ln y = β0 + β1x + ε

This model allows us to estimate the percent change in y when x increases by
one unit.
The sign of β1 again determines the shape.

The prediction model is
l̂n y = b0 + b1x

ŷ = exp(b0 + b1x) systematically underestimate the expected value of y . We use

ŷ = exp(b0 + b1x + se2/2)

as the prediction model, where se is the standard error of the estimate.

Ding (UKY) Lecutre 10 April 16, 2019 22 / 27



Example
Suppose we estimate the food expenditure-income relationship using an exponential
model and find that the estimated exponential model is:

̂lnFood = 7.6 + 0.00005Income

where the standard error of the estimate is se = 0.2.

An individual with an income of $20,000 is predicted to have food expenditure of:

F̂ood = exp(7.6 + 0.00005× 20000 + 0.22/2) = 5541

The slope coefficient of 0.00005 implies that if income increases by $1, food
expenditure would increase by 0.00005× 100 = 0.005 percent.
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The following table summarizes the simple linear and the logarithmic regression
models:

Model Predicted Value Estimated Slope Coefficient

y = β0 + β1x + ε ŷ = b0 + b1x change in ŷ when x ↑ by 1 unit
ln y = β0 + β1 ln x + ε ŷ = exp(b0 + b1 ln x + se2/2) percentage change in ŷ when x ↑ by 1%.
y = β0 + β1 ln x + ε ŷ = b0 + b1 ln x b1

100 change in ŷ when x ↑ by 1%.
ln y = β0 + β1x + ε ŷ = exp(b0 + b1x + se2/2) 100b1 percentage change in ŷ when x ↑ by 1 unit.

Although these models involve nonlinear functions of the two variables y and x , they
are linear in β parameters so can be estimated by OLS.
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Compare Linear Models with Models with Logarithms

For logarithmic model, we can still compare them with linear models using R2.

For log-log model, and exponential model, we cannot compare them with linear
models using R2 directly. Because they have different dependent variables.

For a valid comparison, we need to compute the percentage of explained
variations of y even through the estimated model use ln(y) as the response
variable.

The coefficient of determination R2 can be computed as R2 = r 2
ŷ,y , where rŷ,y is

the sample correlation coefficient between y and ŷ .
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Practice Examples

Consider the following models:
1 ŷ = 200 − 12x
2 ŷ = 19 − 350 ln x
3 l̂n y = 3 + .1x , se = .5
4 l̂n y = 9 − .4 ln x , se = .1

Answer the following questions for each:
1 Interpret the slope coefficient for each of the estimated models
2 For each model, what is the predicted unit change in y when x increases by 100 to 101,

or 1%.
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Summary

Polinomial regression models
I Functional form
I Graphic representation
I Model estimation and prediction

Logarithms regression models
I Log-log model
I log-linear model
I Linear-log model
I Interpretation of coefficients and model predictions.
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