Lecture 10: Regression for Nonlinear Relationships

Xiaozhou Ding
University of Kentucky

April 16, 2019

- The models we leant before all assume there is a linear relationship between x and y.
- e.g. wage and education; wage and experience; Keenland attendance and temperature; food consumption and income, etc.
- But really? Do you really believe their relationship can be represented by a straight line?

Why Do We Need Nonlinear Model?

- Theory predicts nonlinear relationship
- Optimal solution.

For example, the "golden rate" saving rate; the optimal hours of study time every week; the optimal tax rate; etc.

- Changing marginal effect.

For example, the return to education may increase with year of schooling; productivity and working experience; utility you get from the apple and the number of apple you eat; etc.

Polynomial Regression Models

- A simple linear regression model,

$$
y=\beta_{0}+\beta_{1} x+\epsilon
$$

is easy to interpret: if x increases by one unit, we expect y to change by β_{1}, holding other variables constant.

- However, sometimes the relationship cannot be represented by a straight line and, rather, must be captured by an appropriate curve.
- Since one of the assumptions in Chapter 15 replaces the restriction of linearity on the parameters, not the x values, we can capture many interesting nonlinear relationships within this framework.

The Quadratic Regression Model

- For example, a firm's average cost curve tends to be " U -shaped".
- Due to economies of scale, average cost initially falls as output increases, before rising once output reaches a certain threshold.
- Such a relationship can be estimated by a quadratic regression model:

$$
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\epsilon
$$

The "Flexible" Quadratic Model

- For a quadratic regression, we estimate:

$$
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\epsilon
$$

- The sign of β_{2} determines the shape:

- With quadratic regression model $y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\epsilon$,
- The marginal effect of x on y is $\beta_{1}+2 \beta_{2} x$. The marginal effect is NOT a constant, but a function of x.
- Predictions with this model are made by $\hat{y}=b_{0}+b_{1} x+b_{2} x^{2}$.
- When $x=-\frac{b_{1}}{2 b_{2}}, \hat{y}=\{\max , \min \}$ values. \hat{y} reaches its maximum ($b_{2}<0$) or minimum ($b_{2}>0$) when the marginal effect $=0$.

Example

- Suppose we want to estimate the relationship between average cost and output. We gather data for 20 manufacturing firms on output and average cost.
- When using a scatterplot to display the relationship, notice that a quadratic curve seems to better fit the data.

The model is

$$
\text { average cost }=\beta_{0}+\beta_{1} \text { output }+\beta_{2} \text { output }{ }^{2}+\epsilon
$$

Results

$$
\text { average cost }=10.5225-.3073 \text { output }+0.210 \text { output }^{2}
$$

- Is the average cost curve concave or convex? Explain how you know.
- Find the output that maximizes/minimizes the average cost. (Hint: first order condition).

$$
\begin{gathered}
-.3073+2 \times .0210 \text { output }=0 \\
\text { output }=7.32
\end{gathered}
$$

Prediction

- What is the change in average cost going from an output level of 4 million units to 5 million units?

$$
\begin{aligned}
& \widehat{A C}=10.5225-0.3073 \times 4+0.0210 \times 4^{2}=9.63 \\
& \widehat{A C}=10.5225-0.3073 \times 5+0.0210 \times 5^{2}=9.51
\end{aligned}
$$

An increase in output from 4 to 5 million units(one unit increase in x) results in a $\$ 0.12$ decrease in predicted average cost.

- What is the change in average cost going from an output level of 8 million units to 9 million units? Compare this result to the result found in part 1.

$$
\begin{aligned}
& \widehat{A C}=10.5225-0.3073 \times 8+0.0210 \times 8^{2}=9.41 \\
& \widehat{A C}=10.5225-0.3073 \times 9+0.0210 \times 9^{2}=9.46
\end{aligned}
$$

An increase in output from 8 to 9 million units(one unit increase in x) results in a $\$ 0.05$ increase in predicted average cost.

Depending on the value at which x is evaluated, a one-unit change in x may have positive or negative influence on y, and the magnitude of this effect is not constant.

Higher Order Models

- The quadratic regression model allows one sign change of the slope capturing the influence of x on y.
- Polynomial regression models, more generally, are able to describe various numbers of sign changes.
- For example, the cubic regression model allows for two changes to the slope:

$$
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+\epsilon
$$

The n-th order polynomial regression model is:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{1}^{2}+\beta_{3} x_{1}^{3}+\ldots+\beta_{n} x_{1}^{n}+\epsilon
$$

It allows $n-1$ signs changes of the slope.

Regression Models with Logarithms

- Another commonly used transformation to capture nonlinearities between the response and the explanatory variables is based on the natural logarithm.
- Linearity assumes that an increase of one unit in the explanatory variable has the same impact on the response variable regardless of whether x is increasing from 100 to 101 or 1000 to 1001.
- That may not be true if, for example, we want to predict how food expenditure responds to changes in income.

The Log-Log Model

- In a log-log model both the response and the explanatory variables are transformed into natural logs. We can write this model as:

$$
\ln (y)=\beta_{0}+\beta_{1} \ln (X)+\epsilon
$$

- The relationship between y and x is captured by a curve whose shape depends on β_{1}.
Notice, β_{1} is the marginal effect. It denote the percentage change of y if x increases by one percentage.

The Slope as an Elasticity

- In the model $\ln y=\beta_{0}+\beta_{1} x+\epsilon$, we would interpret the slope as the percent change in y given a 1% increase in x. In other words, β_{1} is a measure of elasticity.
- Suppose y represents quantity demanded and x is price. If $\beta_{1}=-1.2$, it would imply that a 1% increase in price is expected to lead to a 1.2% decrease in its quantity demanded.

Prediction

- Even though we estimate the equation with transformed data, it is relatively easy to predict in the original units.
- After the logarithm are computed, the equation is estimated as:

$$
\widehat{\ln y}=b_{0}+b_{1} \ln x
$$

- But $\hat{y}=\exp \left(b_{0}+b_{1} \ln x\right)$ is known to systematically underestimate the expected value of y, so we correct for that by making predictions using:

$$
\hat{y}=\exp \left(b_{0}+b_{1} \ln x+s e^{2} / 2\right)
$$

where $s e$ is the standard error of the estimate.

Example

Refer back to the expenditure example where y is expenditure on food and x represents income. Let the sample regression be

$$
\widehat{\ln y}=3.64+0.5 \ln x
$$

with the standard error of the estimate $s e=0.18$.
(1) What is the predicted food expenditure for an individual whose income is $\$ 20,000$?
(2) What is the predicted value if income increases to $\$ 21,000$?
(3) Interpret the slope coefficient, $b_{1}=0.5$.
(1) For the log-log model, $\hat{y}=\exp \left(b_{0}+b_{1} \ln x+s e^{2} / 2\right)$. If income equals 20,000, $\hat{y}=\exp \left(3.64+0.5 \ln 20000+\frac{0.18^{2}}{2}\right)=5475$.
(2) If income equals $21,000, \hat{y}=\exp \left(3.64+0.5 \ln 21000+\frac{0.18^{2}}{2}\right)=5610$.
(3) The slope means as x increases by $1 \%, y$ increases by 0.5%. As shown in the first two parts, income increases 5% from 20,000 to 21,000 , and expenditure on food increases by 2.47% from 5475 to 5610 , roughly by 2.5%.

Semi-Log Model

- Another common application is a "semi-log" model where only one of the variable is transformed.
- In a logarithmic model only the x is expressed as a natural log:

$$
y=\beta_{0}+\beta_{1} \ln x+\epsilon
$$

y is the original units of measurement. x measurement unit now is the percentage. β_{1} is still the marginal effect. $\beta_{1} / 100$ measures the unit change of y when x increases by 1 percent.
Prediction model is: $\hat{y}=b_{0}+b_{1} \ln x$.

Example

Continuing with the earlier example of food expenditure. Let the estimated logarithmic regression be:

$$
\widehat{\text { Food }}=12+566 \ln (\text { Income })
$$

- For an income of $\$ 20,000$, predicted food expenditure is:

$$
\widehat{\text { Food }}=12+566 \ln (20,000)=5617
$$

- The slope $b_{1}=566$ implies that a 1 percent increase in income leads to an increase in food expenditures of $566 / 100=5.66$.

The Exponential Model

- When the y variable is transformed, but not the x, we have the exponential model:

$$
\ln y=\beta_{0}+\beta_{1} x+\epsilon
$$

- This model allows us to estimate the percent change in y when x increases by one unit.
- The sign of β_{1} again determines the shape.
- The prediction model is

$$
\widehat{\ln y}=b_{0}+b_{1} x
$$

$\hat{y}=\exp \left(b_{0}+b_{1} x\right)$ systematically underestimate the expected value of y. We use

$$
\hat{y}=\exp \left(b_{0}+b_{1} x+s e^{2} / 2\right)
$$

as the prediction model, where se is the standard error of the estimate.

Example

Suppose we estimate the food expenditure-income relationship using an exponential model and find that the estimated exponential model is:

$$
\widehat{\ln \text { Food }}=7.6+0.00005 \text { Income }
$$

where the standard error of the estimate is $s e=0.2$.

- An individual with an income of $\$ 20,000$ is predicted to have food expenditure of:

$$
\widehat{\text { Food }}=\exp \left(7.6+0.00005 \times 20000+0.2^{2} / 2\right)=5541
$$

- The slope coefficient of 0.00005 implies that if income increases by $\$ 1$, food expenditure would increase by $0.00005 \times 100=0.005$ percent.
- The following table summarizes the simple linear and the logarithmic regression models:

Model	Predicted Value	Estimated Slope Coefficient
$y=\beta_{0}+\beta_{1} x+\epsilon$	$\hat{y}=b_{0}+b_{1} x$	change in \hat{y} when $x \uparrow$ by 1 unit
$\ln y=\beta_{0}+\beta_{1} \ln x+\epsilon$	$\hat{y}=\exp \left(b_{0}+b_{1} \ln x+s e^{2} / 2\right)$	percentage change in \hat{y} when $x \uparrow$ by 1%.
$y=\beta_{0}+\beta_{1} \ln x+\epsilon$	$\hat{y}=b_{0}+b_{1} \ln x$	$\frac{b_{1}}{100}$ change in \hat{y} when $x \uparrow$ by 1%.
$\ln y=\beta_{0}+\beta_{1} x+\epsilon$	$\hat{y}=\exp \left(b_{0}+b_{1} x+s e^{2} / 2\right)$	$100 b_{1}$ percentage change in \hat{y} when $x \uparrow$ by 1

Although these models involve nonlinear functions of the two variables y and x, they are linear in β parameters so can be estimated by OLS.

Compare Linear Models with Models with Logarithms

- For logarithmic model, we can still compare them with linear models using R^{2}.
- For log-log model, and exponential model, we cannot compare them with linear models using R^{2} directly. Because they have different dependent variables.
- For a valid comparison, we need to compute the percentage of explained variations of y even through the estimated model use $\ln (y)$ as the response variable.
- The coefficient of determination R^{2} can be computed as $R^{2}=r_{\hat{y}, y}^{2}$, where $r_{\hat{y}, y}$ is the sample correlation coefficient between y and \hat{y}.

Practice Examples

- Consider the following models:
(1) $\hat{y}=200-12 x$
(2) $\hat{y}=19-350 \ln x$
(3) $\widehat{\ln y}=3+.1 x$, se $=.5$
(4) $\widehat{\ln y}=9-.4 \ln x, s e=.1$

Answer the following questions for each:
(1) Interpret the slope coefficient for each of the estimated models
(2) For each model, what is the predicted unit change in y when x increases by 100 to 101, or 1%.

Summary

- Polinomial regression models
- Functional form
- Graphic representation
- Model estimation and prediction
- Logarithms regression models
- Log-log model
- log-linear model
- Linear-log model
- Interpretation of coefficients and model predictions.

