ECO 391 Economics and Business Statistics
 Lecture 2: Continuous Probability Distributions and The Normal Distribution

Xiaozhou Ding

January 16, 2019

Overview

(1) Continuous Random Variables
(2) The Normal Distribution

Continuous Random Variables

Continuous Random Variables

- Remember that random variables may be classified as
- Discrete: The random variable assumes a countable number of distinct values.
- Continuous: The random variable is characterized by (infinitely) uncountable values within any interval.
- When computing probabilities for a continuous random variable, keep in mind that $P(X=x)=0$. Why?
- We cannot assign a nonzero probability to each infinitely uncountable value and still have the probabilities sum to one.
- Thus, since $P(X=a)$ and $P(X=b)$ both equal zero, the following holds for continuous random variables:

$$
P(a \leq X \leq b)=P(a<X<b)=P(a \leq X<b)=P(a<X \leq b) .
$$

PDF and CDF

- Probability Density Function (PDF) $f(X)$ of a continuous random variable X describes the relative likelihood that X assumes a value within a given interval (e.g., $P(a \leq X \leq b)$), where
- $f(x)>0$ for all possible values of X.
- The area under $f(x)$ over all values of x equals one.
- Cumulative Density Function (CDF) $F(x)$ of a continuous random variable X
- For any value x of the random variable X, the cumulative distribution function $F(x)$ is computed as

$$
F(x)=P(X \leq x)
$$

- As a result,

$$
P(a \leq X \leq b)=F(b)-F(a) .
$$

The Normal Distribution

The Normal Distribution

- Symmetric
- Bell-shaped
- Closely approximates the probability distribution of a wide range of random variables, such as the
- Heights and weights of newborn babies
- Scores on SAT
- Cumulative debt of college graduates
- Serves as the cornerstone of statistical inference.

The Normal Distribution

- Symmetric about its mean: Mean=Median=Mode

- Asymptotic: that is, the tails get closer and closer to the horizontal axis, but never touch it.

The Normal Distribution

- The normal distribution is completely described by two parameters: μ and σ^{2}.
- μ is the population mean which describes the central location of the distribution.
- σ^{2} is the population variance which describes the dispersion of the distribution.
- Probability density function of the normal distribution for a random variable X with mean μ and variance σ^{2} :

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

where $\pi=3.14, \exp (x)=e^{x}$, and $e \approx 2.718$ is the base of the natural logarithm.

The Normal Distribution

Example

Suppose the ages of employees in Industries A, B, and C are normally distributed. Here are the relevant parameters:

	Industry A	Industry B	Industry C
μ	42	36	42
σ	5	5	8

(a) σ is the same, μ is different

(b) μ is the same, σ is different

The Standard Normal Z Distribution

- A special case of the normal distribution is the standard normal Z distribution:
- Mean $\mu=0$.
- Standard deviation $\sigma=1$.

Standard Normal Table (z Table)

- Gives the cumulative probabilities $P(Z<z)$ for positive and negative values of z.
- Since the random variable Z is symmetric about its mean of 0 ,

$$
P(Z<0)=P(Z>0)=0.5
$$

- To obtain the $P(Z<z)$, read down the z column first, then across the top.

Standard Normal Table (Z Table)

Table for positive z values.

z	0.00	0.01	0.02	0.03	0.04
0.0	0.5000	0.5040	0.5080	0.5120	0.5160
0.1	0.5398	0.5438	0.5478	0.5517	0.5557
0.2	0.5793	0.5832	0.5871	0.5910	0.5948
0.3	0.6179	0.6217	0.6255	0.6293	0.6331
0.4	0.6554	0.6591	0.6628	0.6664	0.6700

Table for negative z values.

z	0.00	0.01	0.02	0.03	0.04
-3.9	0.0000	0.0000	0.0000	0.0000	0.0000
-3.8	0.0001	0.0001	0.0001	0.0001	0.0001
-3.7	0.0001	0.0001	0.0001	0.0001	0.0001
-3.6	0.0002	0.0002	0.0001	0.0001	0.0001
-3.5	0.0002	0.0002	0.0002	0.0002	0.0002

Example

Finding the Probability for a Given z Value.

- Transform normally distributed random variables into standard normal random variables and use the z table to compute the relevant probabilities.
- The z table provides cumulative probabilities $P(Z \leq z)$ for a given z.

Portion of right-hand page of z table. If $z=1.52$, then look up

Example

Finding the Probability for a Given z Value.

- Remember that the z table provides cumulative probabilities $P(Z<z)$ for a given z.
- If z is negative, we can look up this probability from the left-hand page of the z table

More Example

Example

Finding probabilities for a standard normal random variable Z that $P(-1.52 \leq Z \leq 1.96)$.

$$
\begin{aligned}
& P(-1.52 \leq Z \leq 1.96) \\
= & P(Z \leq 1.96)-P(Z \leq-1.52) \\
= & 0.9750-0.0643 \\
= & 0.9107
\end{aligned}
$$

Finding a z Value for a Given Probability

- For a standard normal variable Z, find the z values that satisfy $P(Z \leq z)=0.6808$.

z.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
-3.4	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0002
-3.3	. 0005	. 0005	. 0005	. 0004	. 0004	. 0004	. 0004	. 0004	. 0004	. 0003
-3.2	. 0007	. 0007	. 0006	. 0006	. 0006	. 0006	. 0006	. 0005	. 0005	. 0005
-3.1	. 0010	. 0009	. 0009	. 0009	. 0008	. 0008	. 0008	. 0008	. 0007	. 0007
-3.0	. 0013	. 0013	. 0013	. 0012	. 0012	. 0011	. 0011	. 0011	. 0010	. 0010
-2.9	. 0019	. 0018	. 0018	. 0017	. 0016	. 0016	. 0015	. 0015	. 0014	. 0014
-2.8	. 0026	. 0025	. 0024	. 0023	. 0023	. 0022	. 0021	. 0021	. 0020	. 0019
-2.7	. 0035	. 0034	. 0033	. 0032	. 0031	. 0030	. 0029	. 0028	. 0027	. 0026
-2.6	. 0047	. 0045	. 0044	. 0043	. 0041	. 0040	. 0039	. 0038	. 0037	. 0036
-2.5	. 0062	. 0060	. 0059	. 0057	. 0055	. 0054	. 0052	. 0051	. 0049	. 0048
-2.4	. 0082	. 0080	. 0078	. 0075	. 0073	. 0071	. 0069	. 0068	. 0066	. 0064
-2.3	. 0107	. 0104	. 0102	. 0099	. 0096	. 0094	. 0091	. 0089	. 0087	. 0084
-2.2	. 0139	. 0136	. 0132	. 0129	. 0125	. 0122	. 0119	. 0116	. 0113	. 0110
-2.1	. 0179	. 0174	. 0170	. 0166	. 0162	. 0158	. 0154	. 0150	. 0146	. 0143
-2.0	. 0228	. 0222	. 0217	. 0212	. 0207	. 0202	. 0197	. 0192	. 0188	. 0183
-1.9	. 0287	. 0281	. 0274	. 0268	. 0262	. 0256	. 0250	. 0244	. 0239	. 0233
-1.8	. 0359	. 0351	. 0344	. 0336	. 0329	. 0322	. 0314	. 0307	. 0301	. 0294
-1.7	. 0446	. 0436	. 0427	. 0418	. 0409	. 0401	. 0392	. 0384	. 0375	. 0367
-1.6	. 0548	. 0537	. 0526	. 0516	. 0505	. 0495	. 0485	. 0475	. 0465	. 0455
-1.5	. 0668	. 0655	. 0643	. 0630	. 0618	. 0606	. 0594	. 0582	. 0571	. 0559
-1.4	. 0808	. 0793	. 0778	. 0764	. 0749	. 0735	. 0721	. 0708	. 0694	. 0681
-1.3	. 0968	. 0951	. 0934	. 0918	. 0901	. 0885	. 0869	. 0853	. 0838	. 0823
-1.2	. 1151	. 1131	. 1112	. 1093	. 1075	. 1056	. 1038	. 1020	. 1003	. 0985
-1.1	. 1357	. 1335	. 1314	. 1292	. 1271	. 1251	. 1230	. 1210	. 1190	. 1170
-1.0	. 1587	. 1562	. 1539	. 1515	. 1492	. 1469	. 1446	. 1423	. 1401	. 1379
-0.9	. 1841	. 1814	. 1788	. 1762	. 1736	. 1711	. 1685	. 1660	. 1635	. 1611
-0.8	. 2119	. 2090	. 2061	. 2033	. 2005	. 1977	. 1949	. 1922	. 1894	. 1867
-0.7	. 2420	. 2389	. 2358	. 2327	. 2296	. 2266	. 2236	. 2206	. 2177	. 2148
-0.6	. 2743	. 2709	. 2676	. 2643	. 2611	. 2578	. 2546	. 2514	. 2483	. 2451
-0.5	. 3085	. 3050	. 3015	. 2981	. 2946	. 2912	. 2877	. 2843	. 2810	. 2776
-0.4	. 3446	. 3409	. 3372	. 3336	. 3300	. 3264	. 3228	. 3192	. 3156	. 3121
-0.3	. 3821	. 3783	. 3745	. 3707	. 3669	. 3632	. 3594	. 3557	. 3520	. 3483
-0.2	. 4207	. 4168	. 4129	. 4090	. 4052	. 4013	. 3974	. 3936	. 3897	. 3859
-0.1	. 4602	. 4562	. 4522	. 4483	. 4443	. 4404	. 4364	. 4325	. 4286	. 4247
-0.0	. 5000	. 4960	. 4920	. 4880	. 4840	. 4801	. 4761	. 4721	. 4681	. 4641

Finding a z Value for a Given Probability

- For a standard normal variable Z, find the z values that satisfy $P(Z \leq z)=0.6808$.

	00	01	02	03	. 04	05	06	. 07	. 08	. 09
0.0	. 5000	. 5040	. 5080	. 5120	. 5160	. 5199	. 5239	. 5279	. 5319	. 5359
0.1	. 5398	. 5438	. 5478	. 5517	. 5557	. 5596	. 5636	. 5675	. 5714	. 5753
0.2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 6141
0.3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
0.4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879
0.5	. 6915	. 6950	. 6985	. 7019	. 7054	. 7088	. 7123	. 7157	. 7190	. 7224
0.6	. 7257	. 7291	. 7324	. 7357	. 7389	. 7422	. 7454	. 7486	. 7517	. 7549
0.7	. 7580	. 7611	. 7642	. 7673	. 7704	. 7734	. 7764	. 7794	. 7823	. 7852
0.8	. 7881	. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	. 8133
0.9	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 8389
1.0	. 8413	. 8438	. 8461	. 8485	. 8508	. 8531	. 8554	. 8577	. 8599	. 8621
1.1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	. 8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	. 9015
1.3	. 9032	. 9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 9147	. 9162	. 9177
1.4	. 9192	. 9207	. 9222	. 9236	. 9251	. 9265	. 9279	. 9292	. 9306	. 9319
1.5	. 9332	. 9345	. 9357	. 9370	. 9382	. 9394	. 9406	. 9418	. 9429	. 9441
1.6	. 9452	. 9463	. 9474	. 9484	. 9495	. 9505	. 9515	. 9525	. 9535	. 9545
1.7	. 9554	. 9564	. 9573	. 9582	. 9591	. 9599	. 9608	. 9616	. 9625	. 9633
1.8	. 9641	. 9649	. 9656	. 9664	. 9671	. 9678	. 9686	. 9693	. 9699	. 9706
1.9	. 9713	. 9719	. 9726	. 9732	. 9738	. 9744	. 9750	. 9756	. 9761	. 9767
2.	. 9772	. 9778	. 9783	. 9788	. 9793	. 9798	. 9803	. 9808	. 9812	. 9817
2.1	. 9821	. 9826	. 9830	. 9834	. 9838	. 9842	. 9846	. 9850	. 9854	. 9857
2.2	. 9861	. 9864	. 9868	. 9871	. 9875	. 9878	. 9881	. 9884	. 9887	. 9890
2.3	. 9893	. 9896	. 9898	. 9901	. 9904	. 9906	. 9909	. 9911	. 9913	. 9916
2.4	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	. 9931	. 9932	. 9934	. 9936
2.5	. 9938	. 9940	. 9941	. 9943	. 9945	. 9946	. 9948	. 9949	. 9951	. 9952
2.6	. 9953	. 9955	. 9956	. 9957	. 9959	. 9960	. 9961	. 9962	. 9963	. 9964
2.7	. 9965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	. 9973	. 9974
2.8	. 9974	. 9975	. 9976	. 9977	. 9977	. 9978	. 9979	. 9979	. 9980	. 9981
2.9	. 9981	. 9982	. 9982	. 9983	. 9984	. 9984	. 9985	. 9985	. 9986	. 9986
3.0	. 9987	. 9987	. 9987	. 9988	. 9988	. 9989	. 9989	. 9989	. 9990	. 9990
3.1	. 9990	. 9991	. 9991	. 9991	. 9992	. 9992	. 9992	. 9992	. 9993	. 9993
3.2	. 9993	. 9993	. 9994	. 9994	. 9994	. 9994	. 9994	. 9995	. 9995	. 9995
3.3	. 9995	. 9995	. 9995	. 9996	. 9996	. 9996	. 9996	. 9996	. 9996	. 9997
3.4	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9998

Finding a z Value for a Given Probability

- Go to the standard normal table and find 0.6808 in the body of the table.
- Find the corresponding z value from the row/column of z.
- $z=0.47$.

The Normal Transformation

Any normally distributed random variable X with mean μ and standard deviation σ can be transformed into the standard normal random variable Z as

$$
Z=\frac{X-\mu}{\sigma}
$$

with corresponding values

$$
z=\frac{x-\mu}{\sigma}
$$

As constructed, the mean of Z is 0 and standard deviation of Z is 1 .

The Normal Transformation

- A z value specifies by how many standard deviations the corresponding x value falls above $(z>0)$ or below $(z<0)$ the mean.
- A positive z indicates by how many standard deviations the corresponding x lies above μ.
- A zero z indicates that the corresponding x equals μ.
- A negative z indicates by how many standard deviations the corresponding x lies below μ.

The Normal Transformation

- Use the inverse transformation to compute probabilities for given x values.
- A standard normal variable Z can be transformed to the normally distributed random variable X with mean μ and standard deviation σ as

$$
X=\mu+Z \sigma
$$

with corresponding values $x=\mu+z \sigma$.

The Normal Transformation

Example

Scores on a management aptitude exam are normally distributed with a mean of $72(\mu)$ and a standard deviation of $8(\sigma)$.

- Given this information, we can transform any score into a z value which shows its relative location to the mean.
- For instance, given the score 60 , using the transformation formula,

$$
z=\frac{x-\mu}{\sigma}=\frac{60-72}{8}=-1.5
$$

Using the standard normal table, find

$$
P(Z>-1.5)=1-P(Z<-1.5)=1-0.0668=0.9332
$$

Summary

- PDF and CDF.
- The normal distribution: mean and variance.
- The standard normal distribution and transformation from the normal.

